ł	Hall Ticket Number:												

Time: 3 hours

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. I Year I Semester Supplementary Examinations, June-2017

Engineering Physics-I	
	Max. Marks: 50
s Note: Answer ALL questions in Part-A and any FIVE from	n Part-B

Part-A (15 Marks)

1.	Write the differential equation for a simple harmonic oscillator.	[1]			
2.	What is impedance?	[1]			
3.	Write Malus law.	[1]			
4.	What are the actual lasing atoms in He-Ne laser?	[1]			
5.	Mention any two applications of Ferrites.	[1]			
6.	The amplitude of a damped oscillator has reduced to 1/5 th of its initial value after 300 oscillations. Calculate the damping constant if time period is 3 seconds.	[2]			
7.	What is Poynting vector?	[2]			
8.	In Newton rings experiment the diameter of 10 the ring changes from 1.40 to 1.27 cm, when a drop of liquid is introduced between the lens and glass plate. Calculate the refractive index of the liquid.				
9.	Calculate the Numerical Aperture of an optical fiber which has core refractive index of 1.60 and a cladding refractive index of 1.54 and acceptance angle.	[2]			
10.	What are ferrites?	[2]			
	Part-B ($5 \times 7 = 35$ Marks)				
11.	a) Explain the combination of two mutually perpendicular simple harmonic vibrations of same frequency.	[3]			
	b) Formulate the differential equation of a damped harmonic oscillator and solve it.	[4]			
12.	a) Derive the electromagnetic wave equations in conducting medium.	[3]			
	b) Explain the LCR parallel resonance circuit and the concept of bandwidth.	[4]			
13.	a) Explain the interference in thin films due to reflection of light and obtain the conditions for maxima and minima.	[3]			
	b) Describe the Fraunhofer's diffraction at double slit and obtain the expression for its intensity.	[4]			
14.	a) Explain the basic principles of holography and discuss its applications.	[3]			
	b) Explain the propagation of light through an optical fibre and deduce the expression for the Numerical Aperture.	[4]			
15.	. a) Explain the Hysteresis curve based on domain theory.	[3]			
	b) Explain the temperature and frequency dependency of dielectric polarisations.	[4]			
16.	a) Obtain the expression for the equation of motion of a simple harmonic oscillator.	[3]			
	b) Distinguish conduction and displacement currents.	[4]			
17.	 Write short notes on any <i>two</i> of the following: a) Laurents's half shade polarimeter. b) Pubu Lagar 	[7]			

- b) Ruby Laser.
- c) Weiss theory of ferromagnetism.

(ସେମ୍ଟେରେରେରେ)